想做好用户画像?先做好用户标签这个基础操作

2021-06-25

本篇要分享的,是一个非常基础的,估计人人都听过的,却经常弄混淆的概念:用户标签。虽然名字简单,但它却是用户画像、精准营销、个性推荐、智能投放等等各种系统的砖石。今天系统分享一下。

一、什么是用户标签

性别:男女,就是一个标签。简单吧!

所谓标签,就是:

1、由原始数据,经过整理、加工、分类所得

2、一个抽象的符号

3、代表一类人/物的特征 

用来描述商品的,就是商品标签;用来描述业务的,就是业务标签;用来描述用户的,就是用户标签了。我们常说“小太阳家庭”“中产阶层”“爱好时尚”等都是用户标签。有意思的是,我们总是说:生活中不要轻易给人贴标签。可为什么还要大张旗鼓做用户标签呢?

二、用户标签的作用

因为面对一个人,出于尊重他人、不带偏见的考虑,我们说不能乱贴标签。但企业经营面对数以千万的用户,就不能一个个去理解,时间和成本都烧不起。如果不加区分,把所有顾客一视同仁,就只能这么地毯式轰炸(如下图所示)

如果有用户标签,就能快速、方便地细分用户群体,锁定更有需求的人,实现更精准的营销/服务。(如下图所示)

不打标签,每次都基于原始数据分析,运营会很纠结:到底是选买过3次的还是4次的才参加活动呢?消费分段选3000,3200,还是3300呢?

理论上,每次都这么纠结也是可行的。但是这样做效率太低,并且能思考的维度太少,很有可能累秃了头也没啥进展。因此可以基于过往分析成果,预先打上标签,能极大提升效率,实现更复杂、更精准的分析。

并且,还能把最后效果记录进标签库,积累分析经验。如果标签打得对,那我们按标签做的事就能起到效果,标签本身质量也被确认;如果标签打错了,那按标签做的事就会没有效果,后续就能修订标签,打新标签。 

我们做用户分层和分群,做精准营销,所有结果也可以以标签形式保存。在后续多次验证,从而沉淀管用、区分度高的标签,提升用户画像的准确度与有用性。 

想要达成这种好的区分效果,当然只靠“男女”这种简单的标签是不够的,于是就有了制作标签的过程(俗称:打标)。具体怎么做?一起来看个简单通俗的例子。

三、用户标签的制作流程

比如谈恋爱,未来的丈母娘上来问的肯定是:

● 多大?

● 哪里人?

● 有房吗?

● 有车吗?

● 公务员吗?

● ……

你看,问的全是用户标签,人家丝毫不在乎你有多痴情,你有多努力。甭整那虚了吧唧的玩意,Show me the 房产证!十八姑娘一枝花,追的人多了去了,就是要大量过滤那些馋身子的小垃圾…… 

然而如果只知道回答是“有房”,是不是就能区分好青年了呢?——当然不可以。

因为单一维度的标签,信息量很有限。就像单纯说“有房”,那到底是上海的房子还是盐城的房子,是60平小两房还是120平大三房,是全款的还是欠了一屁股债的,统统不知道。因此,丈母娘才会问一大堆信息,逐步规整判断到底这个小伙靠不靠谱。 

这就是制作用户标签的直观步骤:

归纳一下,共有7步:

1、从单维度开始

2、设定区分目标

3、进行维度拆解

4、观察区分效果

5、总结经验

6、多维度交叉

7、不断提升效

做用户标签可以很简单,但想做有效的标签,就会很复杂。它是一个从单维度到多维度,从简单到复杂,不断迭代验证的过程。在这个过程中,经常出现问题。

四、用户标签的五大常见问题

▌问题一:没有目标,盲目干活。

很多人被“比如性别:男女就是个标签”这句话误导,以为只要做了分类,就算是标签了。至于分出来的类别之间有什么差异,有多大差异,压根没检验过。甚至,你问他为啥这么打标签,他说不知道。领导让打,咱就打,管他呢。 

实际上,即使是同一个原始数据,在不同目标下,打标方式会完全不同。拿用户年龄举例,可能有好几种分类贴标签的方式(如下图)

▌问题二:不区分时间状态。 

比如打一个“高价值用户”标签,这里“高价值”指的是历史消费水平高,还是未来消费得多?很多人傻傻不分,就统计下历史消费金额,然后消费多的就是价值高。但是谁保证用户过去买得多,未来一定买得多??完全不一定。 

注意:如果我们要打的标签是个未来情况,比如未来消费多,意味着我们要做一个预测:用户未来会消费多少。这里就得基于测试或者建模预测才能得到结论,不能简单基于历史数据统计。 

▌问题三:行为动机乱归因。

比如用户买了产品A,于是就打个“A产品喜爱者”标签。然而用户真的喜欢A产品吗?我们只知道用户买了A的行为,并不能直接推导出动机。如果想推倒动机,需要基于一段时间数据分析,并且综合多个维度判断。

在推导动机的时候要特别谨慎,因为错误地、随意地归因会误导业务行动。明明用户喜欢的是打折,结果却误判为产品粉丝,最后很有可能狂推一堆产品却没有响应。 

▌问题四:多目标混合不清。

比如评高价值用户,把活跃度和付费金额,付费金额和毛利几个指标混合在一起,美其名曰“综合评价”。结果搞出来一毛不花天天白嫖的用户也是高价值用户。要是都这么折腾公司就得破产了。

这类问题,主要是做数据的同学嫌一个维度一个维度切分不体现数据能力,非得整个模型,算个权重才显牛逼。降维可以做,但牢记整个原则:不同类目标不混合。特别是涉及钱的目标。到底公司赚没赚钱,是个很严肃的事。搞混了,是要喝西北风的。 

▌问题五:结果缺少检验。

打用户标签是希望区分用户,那么最后区分效果,在目标上的差异越大越好,如果差异不大,那打标意义就不大,可以取消标签,或者再做优化(如下图所示)。

遗憾的是,很多公司都是为了打标而打标。至于打了标签干什么,用在哪里,效果如何,从来没考虑过。 

乱象背后深层问题,是这几年大肆吹嘘的“数据中台”、“用户画像”的概念。很多企业不是从需求出发,先思考我们要解决什么问题。而是从朋友圈文章出发:哇塞,领导转发《震惊!阿里数据中台秘密,终于揭露了》,领导喜欢,我们就做,搞起搞起。 

于是不管数据采集如何,不问业务落地场景,也不想最后实现什么效果,盲目打标签。临到年底汇报,还喜气洋洋说:我们完成了10万标签组成的海量数据库!数仓、模型、可视化啥都有了,就是没人用,最后一地鸡毛。 

本质上,想取得好结果,还是得从结果本身出发,根据问题找工具,而不是拿着锤子看什么都像钉子。不过很多同学自己也没有见过,天天喊用户画像,也没见几个具体落地成果。啤酒与尿布听得很多,可就是横竖没见过一家超市是这么摆的(于是编故事的人们,会注上:国外某超市,嗯嗯)。 

其实,想做出好的业务效果,远没大家想得复杂,关键在于做好“打标-验证-积累-二次打标”的过程,持续地进行迭代。